The reader following these DIGESTs will note that an unusually long time has elapsed since DIGEST #11 dated April 1989. The Editor has had several major distractions, namely XII ICSMFE in Rio and his 25th Terzaghi Lectures and paper. Also, DMT-related publications are coming out in somewhat overwhelming numbers. However, that's an editor's problem and all the more reason for keeping up with these DIGESTs...

Item 12A - Some New References

Readers might like to note some of the new DMT-related references, including those in the Proceedings of the XII ICSMFE in Rio de Janeiro, along with mini-abstracts by the Editor. See end of text for additional references cited herein.

This paper summarizes the UBC research, in the lab and in the field, using ordinary and special research dilatometers. The authors present a variety of results of interest to DMT users and researchers. See Figures 12F.1 and .2, from this paper.

The authors show that the DMT gave the best K_o values in a clay crust vs. horizontal/vertical odometer method and also the SBPMT.

Hayes, J. A. (1990)

Unusually clear review of the DMT with emphasis for practical settlement calculations. See Figure 12A.1, from this paper.

The author collected G_{max} and DMT data from nine previously published test programs, in a considerable variety of soil types. He developed a correlation using only DMT data that gave an average G_{max} prediction error of 23%, which he considered understandable and acceptable.

Piezobrade (DMT blade with piezometer) and CPTU dissipation tests performed in four clays and compared with lab c_{n} and c_{v} data. Good comparisons obtained. The DMT tests take longer than CPTU tests. (see item 12K)

Comprehensive review of insitu test theory, results, and recommendations for practice. Includes SPT, CPT, CPTU, DMT and PMT, and summary tables for comparative applicability and accuracy of these different insitu tests, in the judgement of the authors at the time of preparing their report, reproduced here as Table 12L.1.

DMT sounding results at nine sites, including five with organic soils with 5 to 35% organics, compared with conventional test results. Comparisons very good, especially for corrected undrained shear strength using modified Marchetti correlation. (see item 12E) The DMT p_c profiles correctly show an aging OCR effect in soft clays until recently considered NC. See item 12G.
"SPT, CPT, Pressuremeter Testing and Recent Developments on
In Situ Testing of Soils, PART I: All Tests except SPT", SOA
paper prepared for Specialty Session at XII ICSMFE, Rio,
65 pp. Also in NGI No. 179, Oslo, 1990.

All tests discussed, including DMT. Many correlations
reviewed and expanded. DMT discussion includes a case
history example of the successful prediction of
lateral pile capacity using the method described by

"c_n Evaluations from DMTA Dissipation Curves", Proceedings

Data from 3 Italian sites illustrating how the semi-
log inflection point in dissipation curves can be used
for a qualitative evaluation of c_n, often sufficient
for at least preliminary design decisions. Mentioned
previously in DMT 11.K.2.

Discussion, ASCE Journal GED, October, p. 1502.

Data showing good comparison between DMT OCR profile
vs. from odometer and triaxial testing, in the
moderately sensitive Norfolk-Yorktown clay formations
(OCR = 4 to 9). Also CPTU profile data.

Penetration Pore Pressures in Clay by CPTU, DMT, and SBP",

All the tests show a general relationship between
effective preconsolidation stress and excess pore
pressure as determined from each test. Intact and
fissured clays show distinctly different trends.

"Dilatometer Testing of the Marine Clay Deposit at Pease Air
Force Base, New Hampshire". M.S. Thesis, Civil Engineering,
Univ. of N.H., Sept., 364 pp.
Sensitive silty clay site investigated in detail with DMT, SBPMT, vane and lab testing. Variety of field stress and pore pressure dissipation tests included. DMT did not measure increase in lateral stress at toe of large embankment.

Research data suggests that E_0 may provide reasonable estimates of small strain shear modulus G_0 through empirical correlations. (note similar item in DMT 10.A.7)

s_u depth profile from DMT, with $35<s_u<80$ kPa, showed excellent agreement with back-calculated values at failure. DMT showed best agreement vs. other insitu test methods. Crust involved. See Fig. 2 in paper.

12B More Comparisons in sands between CPT q_c and q_d:

DIGEST item 11.I previously noted the near-equivalency between q_c and q_d at least in sands. If true, calculating q_d would provide important extra data from the DMT because it would open up the use of various engineering performance correlations that use q_c. We now have three more examples of good q_d/q_c comparisons:

1. In connection with routine testing of sand and clayey sands at a landfill site, the writer compared a q_d profile, using a surface load cell and the method described in Schmertmann (1982) for calculating q_d (routine in data reduction program), with a parallel (5 ft away) mechanical q_c profile. Figure 12B.1 shows the comparison, and they are, again, very similar.

2. Professor M. Jamiolkowski sent (late 1989) sent the editor some preliminary data from the continuing large-scale chamber testing of insitu devices going on in Milano, Italy. Among many other tests, they performed comparative DMT and CPT tests and compared q_d with q_c, using a load cell just above the DMT blade. They report that on the average the ratio $q_d/q_c = 1.2$
for two sands tested in their NC states, and \(q_{d} = 1.1 \) for these same sands when overconsolidated.

3. Campanella (1991) reported that at one very well tested research site when \(I_{o} > 2 \), then \(q_{d} = 1.1 \) using electric CPT tips.

We now have a variety of data showing that \(q_{d} = 1.1 \) \(q_{c} \pm 10\% \). This relationship can be used with confidence in sands, based mostly on electric CPT data. It may be used tentatively in all soils. As expected, \(q_{d} > q_{c} \) because of the difference between the intermediate plane and axisymmetric deformations around the DMT vs. axisymmetric around the CPT.

12C - Pressure Dissipation Tests -- A-B-C vs. \(A_{2} \) vs. \(A \)

The following refers to soils with a permeability low enough to require more than 1 minute to reach pressure equilibrium after DMT blade insertion. This means most soils with \(I_{o} < 2 \).

For purposes of estimating such parameters as: 1) coefficient of consolidation, or 2) effective lateral stress against the blade, or 3) ambient pore water pressure, one can insert the blade and leave it in position and make a succession of readings vs. time until reaching an equilibrium or a recognizable point on the pressure dissipation curve. The question has been -- what method of dissipation to use for what purpose? Researchers have tried various methods, such as repeating the A-B-C sequence each time, performing the A-B-C (or \(p_{0} - p_{1} - p_{2} \)) sequence only once and thereafter repeating \(A \) only, or performing and repeating only the \(A \) readings. Please refer to these herein as the A-B-C, \(A_{2} \) and \(A \) methods, respectively.

Concerning the A-B-C method, DIGEST item 11.K noted some problems with this method, especially sometimes reaching equilibrium at a pressure well below the ambient water pressure. NeJame (1991) reported some similar below-ambient equilibrium values after waiting for almost full dissipation in a silty clay. It appears that this method successively opens a 1 mm cavity which progressively takes longer to repressurize because of the decrease in surrounding hydraulic gradients into the cavity after each A-B-C cycle. In view of this evidence, this method seems unsuitable for present purposes and we recommend it not be used for dissipation tests.

The \(A_{2} \) method opens the cavity with the first cycle, but one runs the risk of an unknown effective soil pressure gradually returning to act on the membrane. If the ambient water pressure is known, and the pressure dissipation appears to be reaching an equilibrium at or near this value, then one has evidence that the cavity has not closed.
completely. This is the best, possibly only method for using the DMT to measure u_0 in low-k soils. It also appears to be the best method, especially if the cavity remains open, for determining pore pressure dissipation and therefore c_h and permeability.

The A-method is the most appropriate for obtaining the equilibrium total stress, and effective stress if u_0 can be estimated, against the penetrating blade. As Marchetti (1986) discussed, one can use this pressure, together with a friction coefficient to estimate pile friction. Marchetti and Totani (1989) also used the A-method to qualitatively estimate c_h.

12D - Soil Aging and Chamber Test Results:

L. Decourt (1989) pointed out in connection with the SPT that chamber tests appeared to require an aging factor (AF) correction before comparison with aged, insitu sands. He suggested AF = 2.0 for SPT N values. This is not a negligible factor, which has previously not been considered because it was not yet appreciated.

The Editor, (Schmertmann 1991) presented many examples from the laboratory and field, in sands and in clays, for modulus and for strength, of the approximate factor of 2 importance of aging. It appears that the direct application of correlations obtained from chamber tests may sometimes first require a correction for aging when applied to natural soils. For example, as discussed by Marchetti (1991) and Schmertmann (1991), the relative insensitivity of the DMT to OCR in chamber sands vs. field behavior (judging by good settlement predictions -- see Figure 12A.1) may result from aged natural sands vs. "baby" chamber sands. Past DMT DIGESTs have occasionally referred to chamber test results. They should be reviewed with this aging precaution in mind. Insights from comparative chamber testing, such as noted in 12C, may have to be modified by aging effects before application to similar soils in the field.

12E - Undrained Strength of Weak Clays:

One of the potentially practical and accurate uses for the DMT involves measuring the corrected* undrained strength, s_u, in soft clays. In such soils the blade insertion expands a cavity to the limit pressure, measured by p_o or p_1, which depends on shear strength. As noted in the previous DIGEST item 11.L, this provides a theoretical basis for determining s_u from p_o or p_1.

In the references noted under 12A.3, Larsson and Eskilson also compared the DMT-produced values of s_u with the correct field vane data typically used in Sweden. They developed their own correlation for
corrected s_u from the DMT, based on limit pressure and cavity expansion theory -- generally similar to that presented in DIGEST Item 11.L, and they obtained

$$s_u = \frac{D_1 - V_o}{F}, \quad \text{with } F = 10.3 \text{ for inorganic clays} \quad (12.1)$$

$$F = 9.0 \text{ for organic clays}$$

Figure 12E.1 shows the comparative DMT-s_u and other test profiles from the 9 sites investigated in these references. The authors commented on the excellent comparisons and considered eqn. 12.1 accurate to ±10%. The writer found that eqn. 12.2 (Marchetti and Crapps, 1981) produces essentially the same results.

$$s_u = \sigma_v' K_p = \frac{p_o - u_o}{10} \quad (12.2)$$

Note that it compares well, and conservatively, with the simplified $K_p/8$ formula noted in Figure 11.L.2, for corrected s_u/σ_v.

Reference to the data bases presented in the previous parts (a), (b), and (c) of Fig. 11.1.2 will show that eqn. 12.2 defines an approx. lower bound for s_u and will therefore usually produce conservative s_u values over the whole range of s_u -- however, not always. NeJame (1991) reported average corrected/uncorrected vane s_u values of 19/33 kPa while eqns. 12.1 and 12.2 gave 35 and 32 kPa, respectively.

Conservatism is often necessary, but as discussed in 12G., the use of local correlations should permit more accuracy for OCR predictions. This also applies to s_u.

* With the common vane shear strength as the reference, after a correction for rate effects usually based on PI.

12F - Further simplified ϕ' from the DMT

In Schmertmann (1982) the Editor presented a theoretical method for calculating the approximate plane strain peak friction angle from DMT data. But, it required a thrust measurement. However, making the thrust measurement often creates problems. Perhaps the insertion equipment cannot easily accommodate a load cell, or a load cell is not available, or the Engineer may be unwilling to make the assumption of negligible soil/rod friction above the friction reducer above the blade. Many researchers have placed a load cell immediately above the blade, but such cells are not readily available and they require calibration, extra wiring, and surface readout equipment. At the very least, thrust measurement adds expense.
In an effort to avoid measuring thrust, Marchetti (1985) showed that \(q_c \) data, which was often available, could be used as an alternate to thrust measurement. Figure 12E.1a taken from Campanella and Robertson (1991) presents his method in graphical form. Because the \(\phi \) prediction is not sensitive to \(K_0 \), it may be estimated or known only approximately. Figure 12E.1b shows a comparison of the various methods at a UBC research site. They all appear to produce very good results when compared to values calculated from SBPMTs.

Since 1982, the Editor has thought that \(\phi' \) values predicted from the DMT are at least equal to, and probably superior to those obtained from sampling and lab testing. It now appears that Campanella's suggestion for using \(K_0 \) has made the DMT more convenient to use for this purpose, though with a possible reduction in accuracy resulting from losing one independent measurement (the thrust).

12E - OCR in the 1 to 3 range

A conservative, accurate determination of the OCR profile from the DMT is most important in the low-OCR range where the design loading might exceed the preconsolidation plastic yield point. In the higher OCR range, say over 3, a large prediction error usually makes little practical difference.

Schmertmann (1991) showed that many, perhaps most or even all natural clays behave as if overconsolidated by aging effects. Before taking advantage of this effect the problem for an engineer is to demonstrate the OC by means of either insitu or laboratory tests. This has proven very difficult when using ordinary quality sampling and laboratory tests because of sample disturbance effects. The DMT offers an alternative. As Schmertmann (1991) demonstrated with a few examples, very high quality laboratory testing and/or the newer insitu tests such as the DMT have been able to demonstrate an aging overconsolidation. Figure 12E.1 shows DMT examples taken from Larsson et. al. (1989) from 9 Swedish soft clays most or all of which were thought to be normally consolidated but are now known to have a useable preconsolidation effect.

Correlation information has now been accumulated by the Editor and others to show that one cannot expect an accurate, global correlation for OCR from the DMT. However, numerous site or region-specific correlations have proven surprisingly accurate -- for example 8 of the 9 cases in Figure 12E.1 (right-most graphs). Everyone using the DMT has noted the striking resemblance between the \(K_0 \) and the OCR profile. All the correlations use \(K_0 \). Larsson et. al. (1991) used OCR = 10^{0.16 (K_0 - 2.5)}. All the others, including Marchetti's original, have used a power expression in the form of OCR = c_2 K_0 c_2. Almost all the correlation data
in the OCR = 1 to 3 range falls between the Marchetti (1980) equation with $c_1 = 0.5$ and $c_2 = 1.56$, and the Lunne et al. (1989) equation, based on the Powell and Uglov (1988) data, with $c_1 = 0.24$ and $c_2 = 1.32$.

Thus, for a globally conservative value for OCR in the range of 1 to 3 the Editor recommends the P and U equation $OCR = 0.24 K_0^{1.32}$.

For more accurate estimates, at all OCR, one needs some site- or region-specific correlation data in the same soil. For such cases the Editor recommends using $c_2 = 1.5$ and using the correlation information to determine the best c_1.

12H - Pile lateral load p-y curves

It appears that the DMT may have a special usefulness for predicting the lateral load deformation behavior of displacement piles. The DMT provides an approximate model for this problem, and indeed Marchetti originally intended it as a tool to provide soil parameters for lateral pile analysis. There are two methods that have been proposed, namely by Gabr and Borden (1988) and by Robertson et al. (1989). Recently published research indicates that both methods provide very good results.

Lunne et al. (1989) presented an example (p. 45, Fig. 90) showing excellent results using the B and G method on a research project in Norway. Marchetti et al. (1991) also showed excellent results using the R method at a research site in Italy. Campanella and Sy (1991) showed the DMT gave the best predictions. These new examples are, of course, in addition to those initially offered by these authors to develop and support their respective methods.

It appears the DMT may become the test of choice for this problem. It has some important advantages over the PMT, notably less cost per test, a semi-continuous profile, and perhaps most importantly -- one can test close to the surface where most of the lateral pile deformation takes place.

12I - DMT Suitability Tabulations

Engineers sometimes find it useful to consult tabulations that indicate the relative accuracy and practicality of different types of insitu tests for different purposes, or their effectiveness in different soil conditions. Any such tabulations reflect the opinions, experience and expectations of their authors. Tables 12I.1 from Kulhawy & Mayne (1989) and 12I.2 by the Editor reflect their digested and extensive practical and research experience with the insitu tests involved.
12J - Other "Dilatometers"

Paul Mayne reminded the Editor that the world out there is full of "dilatometers". He sent the enclosed Figure 12J.1 to make his point. Thus, if there is a chance for confusion, we need to identify our dilatometer by specifically calling it the "Marchetti dilatometer" or "Marchetti DMT".

12K - List of Users

The reader might be interested in who else has, and presumably uses, the Marchetti DMT equipment and who distributes it. The attached Table 12K.1 and 12K.2 give our latest such compilations.

Very truly yours,

[Signature]

John H. Schmertmann
Editor
LIST OF REFERENCES CITED
AND NOT IN 12A

Campanella, R.G. and Robertson, P.K. (1991)
"Use and interpretation of a research dilatometer", Can. Geotech. J.,
Vol. 28, pp. 113-126.

Campanella, R. and Sy, Alex (1991)
"Use of In-Situ Testing in Pile Design: The Research Pile Site at UBC",
Geotechnical News, June, p. 42.

DeCourt, L. (1989)
"The standard penetration test, state-of-the-art-report", XII ICSMFE,
12 pp.

"Analysis of Load Deflection Response of Laterally Loaded Piers Using

Marchetti, S. (1980)
"In Situ Tests by Flat Dilatometer", Journal of the Geotechnical
pp. 299-321.

DMT Operating Manual, prepared by GPE, Inc., 4509 NW 23rd Ave, Suite 19,
Gainesville, FL, 32606.

Marchetti, S. (1985)
"On the field determination of K_0 in sand". Proceedings, XI ICSMFE, San

Marchetti, S. (1991)
Discussions to Leonards and Frost (1990), ASCE JGE Vol.

Flat Dilatometer Manual, distributed by GPE, Inc., June, (see p. 4,8).

Marchetti, S., Totani, G., Campanella, R.G., Robertson, P.K., and
Taddei, B., (1986)
"The DMT-σrypton Method for Piles Driven in Clay", Proceedings of In Situ
'86, ASCE Geotechnical Special Publication No. 6, Blacksburg, VA, June
23-25, pp. 765-779.

Marchetti, S., Totani, G., Calabrese, M., and Monaco, P. (1991)
"P-y Curves from DMT Data for Piles Driven in Clay", Deep Foundation
Instit. Proc. 4th Intnl. Conf. Deep Foundation Inst. on Piling and Deep
Foundations, Stresa, Apr.

"Marchetti Dilatometer Testing in UK Soils", Proc., ISOPT-1, Florida,

Schmertmann & Crapps, Inc. (1988)
"Guideline Summary for Using the CPT and Marchetti DMT for Geotechnical
Design", Rept. No. FHWA-PA-87-014+84-24 submitted to PennDOT, Office of
Research and Special Studies, Harrisburg, PA, Feb., in 4 volumes, Vol.
"A method for determining the friction angle in sands from the Marchetti
dilatometer test (DMT)", Proc., 2nd European Symposium on Penetration

Schmertmann, John H., (1991)
117, No. 9, September, pp. 1288-1330.

Schmertmann, John H., (1991)
Discussions to Leonards and Frost (1990), ASCE JGE Vol. 114, Jul 88, in
Vol. 117, No. 1, pp. 172-188.
Figure 12B.1 - Field example comparison of q_d with mechanical q_c in sands and clayey sands.

Figure 12A.1 (from Hayes, 1990) - Comparison of observed and calculated settlement.
FIGURE 12E.1 - COMPARATIVE REFERENCE DATA (*) WITH DMT PREDICTIONS FROM 9 SWEDISH SITES IN INORGANIC & ORGANIC SOFT CLAYS (Larsson, 1989)
(a) Proposed method substituting use of K_D for q_c (or thrust)

(b) Prediction comparisons at one research site

FIGURE 12F.1
SIMPLIFIED ϕ' FROM THE DMT
(from Campanella & Robertson, 1991)
Table 12.1.1 - Tabulations from Kulhawy & Mayne (1989)

Purpose of In-Situ Tests

<table>
<thead>
<tr>
<th>Test</th>
<th>Simple</th>
<th>Complex</th>
<th>Semi-complex</th>
<th>Complex and Continuous</th>
<th>Continuous</th>
<th>PVD</th>
<th>Theory</th>
<th>Empirical</th>
<th>Practical</th>
<th>Most types</th>
<th>Soft</th>
<th>Routine</th>
<th>Limited</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPT</td>
<td>Easy</td>
<td>Medium</td>
<td>Medium</td>
<td>Medium</td>
<td>Medium</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>MCF</td>
<td>Easy</td>
<td>Medium</td>
<td>Medium</td>
<td>Medium</td>
<td>Medium</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>EPT</td>
<td>Medium</td>
<td>Medium</td>
<td>Medium</td>
<td>Medium</td>
<td>Medium</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>MT</td>
<td>Medium</td>
<td>Medium</td>
<td>Medium</td>
<td>Medium</td>
<td>Medium</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>NNT</td>
<td>Medium</td>
<td>Medium</td>
<td>Medium</td>
<td>Medium</td>
<td>Medium</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>NPT</td>
<td>Medium</td>
<td>Medium</td>
<td>Medium</td>
<td>Medium</td>
<td>Medium</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Table F-1 - Usefulness of In-Situ Tests in Common Soil Conditions

<table>
<thead>
<tr>
<th>Soil Type</th>
<th>gravel</th>
<th>sand</th>
<th>silt</th>
<th>clay</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test</td>
<td>loose</td>
<td>dense</td>
<td>soft</td>
<td>stiff</td>
</tr>
<tr>
<td>SPT</td>
<td>2 to 3</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>MCF</td>
<td>2 to 3</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>EPT</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>GPT</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>MT</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>NNT</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>NPT</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Notes: Mechanical CPT g. Electric CPT h. Piezometric CPT i. Self-boring MT

Table F-3 - Estimates of In-Situ Test Variability

<table>
<thead>
<tr>
<th>Test</th>
<th>COV (%)</th>
<th>COV (%)</th>
<th>COV (%)</th>
<th>COV (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equipment</td>
<td>5^{th}</td>
<td>75^{th}</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>Procedure</td>
<td>5^{th}</td>
<td>75^{th}</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>Random</td>
<td>5^{th}</td>
<td>75^{th}</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>Total</td>
<td>5^{th}</td>
<td>75^{th}</td>
<td>12</td>
<td>15</td>
</tr>
</tbody>
</table>

Notes: a. COV = standard deviation/mean

Table F-4 - Meeting Requirements and Costs of In-Situ Tests

<table>
<thead>
<tr>
<th>Test</th>
<th>COV (%)</th>
<th>COV (%)</th>
<th>COV (%)</th>
<th>COV (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Penetration Test (SPT)</td>
<td>5^{th}</td>
<td>75^{th}</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>Mechanical Cone Penetration Test (MCP)</td>
<td>5^{th}</td>
<td>75^{th}</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>Electrical Cone Penetration Test (ECP)</td>
<td>5^{th}</td>
<td>75^{th}</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>Vane Shear Test (VST)</td>
<td>5^{th}</td>
<td>75^{th}</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>Dilatometer Test (DNT)</td>
<td>5^{th}</td>
<td>75^{th}</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>Self-boring Pressuremeter Test (SMP), 5^{th}</td>
<td>5</td>
<td>75^{th}</td>
<td>12</td>
<td>15</td>
</tr>
</tbody>
</table>

Notes: a. COV = standard deviation/mean

Table 12.12 - From Schmertmann & Crapps (1988)

Suitability of DMT in Different Types of Soil

Suitability Ranking:
- 0 = do not use DMT
- 1 = sometimes suitable
- 2 = good
- 3 = best application

Note: Hammer-driving alters the DMT results and decreases the accuracy of correlations.

<table>
<thead>
<tr>
<th>Suitability for Different Soil Conditions</th>
<th>weak, loose *</th>
<th>medium</th>
<th>stiff, dense **</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSPT<5, qc<15</td>
<td>NSPT=25, qc<75</td>
<td>NSPT>40, qc>150</td>
<td></td>
</tr>
<tr>
<td>Fills</td>
<td>Fills</td>
<td>Fills</td>
<td></td>
</tr>
<tr>
<td>Dumped, Natural</td>
<td>Light, Natural</td>
<td>Heavy, Natural</td>
<td></td>
</tr>
<tr>
<td>Pumped</td>
<td>Cmpxn.</td>
<td>Cmpxn.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Soil Type</th>
<th>Fills</th>
<th>Fills</th>
<th>Fills</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clays</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Silts</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Sands</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Gravel, lg. shell and concretions</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Cobbles</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rock (weathered)</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>CL+SI+SD</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CL+SI+SD+Shell</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>CL+SI+SD+Rock</td>
<td>1</td>
<td>1</td>
<td>1 **</td>
</tr>
<tr>
<td>Sand+Gravel</td>
<td>2</td>
<td>2</td>
<td>2 **</td>
</tr>
<tr>
<td>Organic CL+SD</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Residual w/o rock</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Residual w/ rock</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Cemented sand</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Tallus with rock</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Glacial Till</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Varved Clays</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Loess</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Peats</td>
<td>3*</td>
<td>2*</td>
<td>2</td>
</tr>
<tr>
<td>Slimes, tailings</td>
<td>3*</td>
<td>-</td>
<td>2</td>
</tr>
</tbody>
</table>

* Sensitive testing in very weak soils.
** High risk of damage – use high strength blade & membrane.
INTERNATIONAL DILATOMETER OWNERS

1. PALER SA (distributor)
2. L'AQUILA UNIVERSITY
3. CAMBRIDGE INSTITU
4. STUDIO GEOTECNICO ITALIANO
5. LICA, INC.
6. RAYMOND INTERNATIONAL, UK
7. TERRACONTROL
8. DIO. ALVARO MILAN
9. CENTRO DE ESTUDIOS OBRAS PUBLICAS
10. PM INSTITU TECHNIQUES
11. NORWEGIAN GEOTECHNICAL INSTITUTE
12. NORWEGIAN ROAD AUTHORITY
13. CHALMERS UNIVERSITY
14. NORWEGIAN INSTITUTE OF TECHNOLOGY
15. NANYANG TECHNOLOGICAL INSTITUTE
16. UNIVERSITY OF ADELAIDE
17. VIKA AB CONSULTING ENGINEERS
18. GEOFORCE, S.A.
19. ROAD CONSTRUCTION AUTHORITY
20. BUILDING RES. ESTABLISHMENT(BRE)
21. FUGRO UK
22. DOUGLAS & PARTNERS
23. GEOSTUDIO VICENZETTO SNC
24. TECNOSOL SPA
25. GEOSTUDIO VICENZETTO SAS
26. CONSONDA SPA
27. RADIOL SPA
28. GEOTECHNICAL SERVICE SNC
29. SOILTEST SNC
30. GEOTEST SRL
31. SOLSTUDIO
32. ASIA-TECH ENGNG CONSULTANTS INC.
33. BUNDESAUTRALT FUR WASSERBAU
34. VIKA AB CONSULTING ENGINEERS
35. SWEDEN GEOTECHNICAL INSTITUTE
36. MINISTRY OF PUBLIC WORKS
37. UNITED GEOTECH INC.
38. TRANSPORT & ROAD RES.LABORATORY
39. KISO JIBAN CONSULTANTS CO., LTD.
40. LOUISIANA STATE UNIVERSITY
41. INNHENFIELD SCH END
42. INSTITUFUR GEOTECHNIK
43. KEDS: Research Lab. Public Works
44. GRONDMECHANICA DELFT
45. SAN LIEN DEVELOPMENT CO.
46. CENTRAL BUILDING RESEARCH INSTIT.
47. GEOTECH AB (distributor)
48. SUEZ.-EISS
49. A.S.T.E.
50. MINISTRY OF PUBLIC WORKS
51. KONZULTATEGAF EF
52. STOOP BOHR AG
53. U.YU UK LTD
54. TECNOUOLO SA
55. STUDIO PETER FREY
56. I.G.T. OY
57. KAWASAKI GEO. ENGG., CO.
58. SHIN POONG ENGG.
59. JACOPOSS & WIDMARK
60. INDIAN INST. OF TECHNOLOGY
61. CENTRAL SOIL & MAT. RES. STATION
62. HONG KONG UNIVERSITY CIV. ENG.
63. WARSAW UNIVERSITY
64. GEOCYCLO AB

Montagnola Ticino, SWITZERLAND
L'Aquila, L'AQUILA
Cambridge, ENGLAND
Milan, ITALY
Caracas, VENEZUELA
London, UK
Johannesburg, SOUTH AFRICA
Paraiba, COLOMBIA
Madrid, SPAIN
Cambridge, ENG.
Oslo, NORWAY
Osul, NORWAY
Goteborg, Sweden
Trondheim, NORWAY
SINGAPORE
Adelaide, AUSTRALIA
Goteborg, Sweden
Rio de Janeiro, BRASIL
Halboune, AUSTRALIA
England, UK
Sydney, AUSTRALIA
Padova, ITALY
Roma, ITALY
Sagrate-Milano, ITALY
Milano, ITALY
Casalmaico-Milano, ITALY
Tronto, ITALY
Arzago, ITALY
Pescara, ITALY
Taipai, TAIWAN ROC
Karlsruhe, WEST GERMANY
Karlstad, SWEDEN
Linkoping, SWEDEN
Neveon, ITALY
Taipei, TAIWAN
Crowthorne, Berkshire, ENGLAND
Tokio, JAPAN
Taichung, TAIWAN ROC
WEST MALAYSIA
Wien, AUSTRIA
Athenae, GREECE
Delft, NETHERLANDS
TAIWAN ROC
Rsorke, INDIA
Stockholm, SWEDEN
Golumba, FRANCE
Zwijnaarde, BELGIUM
Athens, GREECE
Goteborg, Sweden
Zurich, SWITZERLAND
Luton, UK
Lugano, SWITZERLAND
Zug
55. STUDIO PETER FREY
56. I.G.T. OY
57. KAWASAKI GEO. ENGG., CO.
58. SHIN POONG ENGG.
59. JACOPOSS & WIDMARK
60. INDIAN INST. OF TECHNOLOGY
61. CENTRAL SOIL & MAT. RES. STATION
62. HONG KONG UNIVERSITY CIV. ENG.
63. WARSAW UNIVERSITY
64. GEOCYCLO AB

NORTH AMERICAN DILATOMETER OWNERS

1. GPE, INC. (distributor)
2. SCHMIDT & GAFRE INC.
3. MOHILE AMBERS LTD. - Mr. Currie
4. SITE INVESTIGATION SERVICES - (user & distributor)
5. CLARENSON COLLEGE - Civil Engineering Dept.
6. PURDUE UNIVERSITY - Dr. Leonarda
7. TERA TECHNOLOGIES - Mr. Kopp
8. ELLIS & ASSOCIATES - Mr. Edmonds
9. COLORADO STATE UNIV. - Dr. Waelsch
10. UNIVERSITY OF CALIFORNIA - Dr. Borden
11. BAY AREA COUNCIL OF CANADA - Dr. Besouk
12. CARLETON UNIVERSITY - Prof. Bauer
13. NORTHERN UNIVERSITY - Prof. Kirsie
14. UNIVERSITY OF BRITISH COLUMBIA - Dr. Campanella
15. UNIVERSITY OF NEVADA - Civil Engineering Dept.
16. UNIVERSITY OF FLORIDA / GROTECH. INC. - Dr. Blouquet
17. STEPHENS & ASSOCIATES - Mr. Williams
18. FLA DOT / UNIV. OF FLORIDA - Dr. Ruth
19. LAW ENGINEERING TESTING CO. - Mr. Williams
20. JOHN ENG. & SCIENCES, INC. - Mr. Gupta
21. BOGENCOLE & Co. - Mr. Nolan (distributor)
22. ONTARIO HYDRO - Mr. Craig
23. DOMINION SOILS INVESTIGATION - Mr. Fabius
24. MDH ENGINEERING - Mr. Hardy
25. LOUISIANA STATE UNIVERSITY - Prof. Tymus
26. CALIFORNIA POLYTECHNICAL INST. - Mr. Verdi
27. UNIVERSITY OF TEXAS - Dr. Stokoe
28. UNIVERSITY OF MICHIGAN - Prof. Brycik
29. U.S. BUREAU OF RECLAMATION - Mr. Fassan
30. ALABAMA POWER CO. - Mr. G. Gore
31. UNIVERSITY OF NEW HAMPSHIRE - Dr. Beuclit
32. UNIVERSITY OF WISCONSIN-MADISON - Dr. Nelson
33. FLA DOT / DISTRICT 3 - Mr. Knight
34. FLA DOT / DISTRICT 5 - Mr. Halerk
35. DOMINION SOILS INVESTIGATION
36. UNIVERSITY OF CALIFORNIA (BERKELEY) - Dr. Mitchell
37. T.L.B. & ASSOCIATES - Mr. Falmeagen
38. UNIVERSITY OF NORTH CAROLINA - Dr. Janeshead
39. HATCO - Mr. W. V. Ejja
40. DEGROS ENGINEERING & TESTING - Mr. Andy Alberti
41. ATEC & ASSOCIATES - Mr. Deve Miller
42. KIDDE CONSULTANTS - Dr. Ramesh Gupta
43. FLA DOT / RESEARCH & MATERIALS - Dr. Ho
44. FLA DOT / DISTRICT 1
45. UNIVERSITY OF MASSACHUSETTS - Dr. Lanverger
46. ARDMAR & ASSOCIATES - Dr. Robert Martin
47. CORNHELL UNIVERSITY - Mr. Paul Hayne
48. VIRGINIA POLYTECHNICAL INSTITUTE - Dr. Duncan
49. UNIVERSITY OF NEBRASKA - Dr. J. Bensc
50. PACIFIC G&G ELECTRIC
51. LAW ENGINEERING
52. FRIENDLY ENGINEERING
53. UNIVERSITY OF ILLINOIS
54. MERLEX ENGINEERING
55. MARYLAND DOT
56. GEORGIA INST. OF TECHNOLOGY
57. VTR-TN-SITI TESTING INC.
58. OKLAHOMA DOT
59. ENGINEERING SCIENCES
60. BUCKNELL UNIVERSITY

Galeneville, FL
Goleneville, FL
Peterborough, Ontario
Potsdam, NY
West Lafayette, IN
Kirkwood, IA
Jacksonville, FL
Fort Collins, CO
Reidsville, NC
Ottawa, Ontario
Evansville, IN
Syracuse, NY
Harbesburg, PA
Vancouver, BC
Reno, NV
Galeneville, FL
Clearwater, FL
Galeneville, FL
Nacoma, WA
Baltimore, MD
Galtersberg, NC
Toronto, Ontario
Thunder Bay, Ontario
Anne Arbor, MI
Becen Rouge, LA
San Luis Obispno, CA
Austin, TX
Ann Arbor, MI
Denver, CO
Birmingham, AL
Hudson, WI
Maiden, NC
Chiple, FL
Deld, FL
Winston, Ontario
Markham, ON
Crofton, MD
Charlotte, NC
Edmonds, WA
Cleveland, OH
Marietta, GA
Jesseup, MD
Galeneville, FL
Favers, FL
Amherst, MA
Miami, FL
Ottawa, ON
Fort Worth, TX
Lincoln, NE
San Ramon, CA
Jacksonville, FL
Atlanta, GA
Chicago, IL
North Bay, Ontario
Burlington, ON
Atlanta, GA
Oakland, CA
Oklahoma City, OK
Orlando, FL
Lewisburg, PA
MARCHETTI DILATOMETER DISTRIBUTORS
(January 1992)

WORLDWIDE

PALESA
- Dr. G. Togliani
- Piazza Brocchi, 5
- 6926 Montagnola Ticino
- SWITZERLAND
 - Phone: 0041-91-543 771
 - Fax: 0041-91-549 108

BRAZIL
- GEOMECANICA SA - RIO
- Mr. Bogossian
- Rua Bela, 649
- Sao Cristovao
- Rio de Janeiro-RJ 20930
- BRAZIL
 - Phone: 0055-21-580 1273
 - Fax: 0055-21-580 1026

GREECE
- P.XYSTRIS & CO.
- Mr. P.Xistris
- Ag. Fotinis 55
- Nea Smyrni 171 21
- Athens, GREECE
 - Phone: 0030-1-93 59 142
 - Fax: 0030-1-93 59 778

INDIA
- KALPAKA ENGINEERS
- Mr. Anantha Ramaiah
- 17, Sir C.V. Raman Road
- Alwarpet, Madras - 600 018
- INDIA
 - Phone: 0091-44-76 743
 - Fax: 0091-44-944 444

JAPAN
- KISO-JIBAN CONSULTANTS CO., Tokyo
- Mr. Y. Nakashima
- Dr. Kenji Mori
- 1-11-5 Kudan-Kita, Chiyoda-Ku
- Tokyo 102, JAPAN
 - Phone: 0081-3-3221 6429
 - Fax: 0081-3-3263 1448

NETHERLANDS, BELGIUM, GERMANY, POLAND, HUNGARY, and USSR
- A.P. VAN DEN BERG
- Mr. E. Welling
- 8440 AB Heerenveen, THE NETHERLANDS
 - Phone: 0031 5130 31355
 - Fax: 0031 5130 31212

SCANDINAVIA
- (Sweden, Norway, Denmark, Iceland)
 - GEOTECH AB
 - Mr. Kenneth Melander
 - DATAVAGEN 53
 - S - 436 32 ASKIM
 - SWEDEN
 - Phone: 0046-31-289 920
 - Fax: 0046-31-681 639

SINGAPORE
- LOCHTA SERVICES Pte Ltd
- 60 B Martin Rd #07-01/02
 - Singapore Warehouse
 - SINGAPORE 0923
 - Phone: 0065-73 43 181
 - Fax: 0065-73 33 723

SPAIN
- COMPANY INDUSTRIAL de SONDEOS SA
- Mr. Federico GIL
- Paseo de Goya 15
- 28932 Mostoles (MADRID)
- SPAIN
 - Phone: 0034 1 613 27 00
 - Fax: 0034 1 613 27 50

USA and CANADA
- GPE INC.
- Mr. Paul Bullock
- Dr. John Schmertmann
- 4509 NW 23rd Avenue, Suite 19
 - Gainesville, Florida 32606
 - UNITED STATES OF AMERICA
 - Phone: 001-904-378 2792
 - Fax: 001-904-372 9808

ENGLAND
- CAMBRIDGE INSITU
- Mr. Dalton
- Little Eversden
- Cambridge CBR 7HE
- ENGLAND
 - Phone: 0044-223-26 23 61
 - Fax: 0044-223-26 39 47